SIEMENS

ICs for Consumer Electronics

DDC-PLUS-Deflection Controller SDA 9361

Edition 1998-02-01

This edition was realized using the software system FrameMaker ${ }^{\circledR}$

Published by Siemens AG, Bereich

 Halbleiter, Marketing-Kommunikation, Balanstraße 73,
81541 München

(C) Siemens AG 1998.

All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose!
Critical components ${ }^{1}$ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems ${ }^{2}$ with the express written approval of the Semiconductor Group of Siemens AG.

1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

SDA 9361 Revision History:		Current Version: 1998-02-01
Previous Version:	1997-04-07	
Page (in previous Version)	Page (in current Version)	Subjects (major changes since last revision)
33	35	Setup time of input HSYNC (CLEXT=1) changed from 6 ns to 4 ns
35	37	Nom. average and max. stand-by current specified
35	37	Specification of charge current pump of PLL pin LF is unnecessary

Data Classification

Maximum Ratings

Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Recommended Operating Conditions

Under this conditions the functions given in the circuit description are fulfilled. Nominal conditions specify mean values expected over the production spread and are the proposed values for interface and application. If not stated otherwise, nominal values will apply at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and the nominal supply voltage.

Characteristics

The listed characteristics are ensured over the operating range of the integrated circuit.

Edition 1998-02-01

Published by Siemens AG, Semiconductor Group
Copyright © Siemens AG 1998. All rights reserved.
Terms of delivery and right to change design reserved.
Table of Contents Page
1 Overview 5
1.1 Features 5
1.2 General Description 6
1.3 Pin Configuration 6
1.4 Pin Description 7
1.5 Block Diagram 9
2 System Description 10
2.1 Functional Description 10
2.2 Circuit Description 12
2.3 Reset Modes 14
2.4 Frequency Ranges 15
$2.5 \quad{ }^{2} \mathrm{C}$-Bus Control 16
2.5.1 $I^{2} \mathrm{C}$-Bus Address 16
2.5.2 ${ }^{2} \mathrm{C}$-Bus Format 16
2.5.3 ${ }^{2} \mathrm{C}$ - -Bus Commands 17
2.5.4 Detailed Description 18
2.5.5 Explanation of Some Control Items 24
3 Absolute Maximum Ratings 33
3.1 Recommended Operating Conditions 34
3.2 Characteristics (Assuming Recommended Operating Conditions) 37
4 Application Information 40
5 Waveforms 41
5.1 VD- Output Voltage, 4/3-CRT and 16/9-Source 41
5.2 Timing Diagram of SCAN 42
5.3 Power On/Off Diagram 44
5.4 Standby Mode, RESN Diagram 45
5.5 Function of H, V Protection 46
6 Package Outlines 47

SIEMENS

DDC-PLUS-Deflection Controller

MOS

1 Overview

1.1 Features

- Deflection - Protection - 16:9 / 4:3
- No external clock needed
- $\Phi 1$ PLL and $\Phi 2$ PLL on chip
- $\mathrm{I}^{2} \mathrm{C}$-Bus alignment of all deflection parameters
- All EW-, V- and H-functions

- PW EHT compensation
- PH EHT compensation
- Compensation of H -phase deviation (e.g. caused by white bar)
- Upper/lower EW-corner correction separately adjustable
- V-angle correction: Vertical frequent linear modulation of H -phase
- V-bow correction: Vertical frequent parabolic modulation of H -phase
- Three reduced V-scan modes ($75 \%, 66 \%, 50 \%$ V-size) adjustable by only 2 Bits
- H-frequent PWM output signal for general purpose
- H- and V-blanking time adjustable
- Partial overscan adjustable to hide the cut off control measuring lines in the reducedscan modes
- Stop/start of vertical deflection adjustable to fill out the $16 / 9$ screen with different letterbox formats without annoying overscan
- Control signal SCAN as reference for vertical positioning of OSD, PIP etc.
- Vertical noise reduction with memory
- Standard and doubled line frequencies for NTSC and PAL, MUSE standard, ATV standard, HDTV standard
- Self adaptation of V-frequency/number of lines per field between 192 and 680 for each possible line frequency
- Protection against EHT run away (X-rays protection)

Type	Ordering Code	Package
SDA 9361	Q67107-H5167-A703	P-MQFP-44-2

- Protection against missing V-deflection (CRT-protection)
- Selectable softstart of the H -output stage
- Clock generation on chip
- P-MQFP-44-2 package
- 5 V supply voltage

1.2 General Description

The SDA 9361 is a highly integrated deflection controller for CTV receivers with standard or doubled line and field frequencies. It controls among others an horizontal driver circuit for a flyback line output stage, a DC coupled vertical saw-tooth output stage and an east/ west raster correction circuit. All adjustable output parameters are $\mathrm{I}^{2} \mathrm{C}$ Bus controlled. Inputs are HSYNC and VSYNC. The HSYNC signal is the reference for the internal clock system which includes the $\Phi 1$ and $\Phi 2$ control loops.

1.3 Pin Configuration

Figure 1

1.4 Pin Description

Pin No.	Symbol	Type	Description
1	CLKI	I/TTL	Input for external clock
2	X1	I	Reference oscillator input, crystal
3	X2	Q	Reference oscillator output, crystal
4	SDAT	IQ	$\mathrm{I}^{2} \mathrm{C}$-Bus data
5	SCLK	I	$\mathrm{I}^{2} \mathrm{C}$-Bus clock
6	RESN	I/TTL	Reset input, active low
7	SCAN	Q/TTL	Control signal for vertical positioning of OSD, PIP etc.
8	SCP	Q	Blanking signal with H - and color burst component (V-component selectable by $\mathrm{I}^{2} \mathrm{C}$ Bus)
9	$V_{\mathrm{DD}(\mathrm{D})}$	S	Digital supply
10	$V_{\text {SS(D) }}$	S	Digital ground
11	VPROT	I	Watching external V-output stage (input is the V-sawtooth from feedback resistor)
12	HPROT	I	Watching EHT (input is e.g. H-flyback)
13	$V_{\text {DD(A1) }}$	S	Analog supply
14	D/A	Q	Output of an $\mathrm{I}^{2} \mathrm{C}$ Bus controlled DC voltage
15	ABL	I	Input for a beam current dependent signal for stabilization of width, height and H-phase
16	$V_{\text {SS(A1) }}$	S	Analog ground
17	$V_{\text {REFN }}$	IQ	Ground for $V_{\text {REFP, }}, V_{\text {REFH }}, V_{\text {REFL }}$
18	$V_{\text {REFP }}$	IQ	Reference voltage for IBEAM ADC, DAC, HPROT / VPROT thresholds
19	$V_{\text {DD(A2) }}$	S	Analog supply
20	E/W	Q	Control signal output for east/west raster correction
21	VD+	Q	Control signal output for DC coupled V-output stage
22	VD-	Q	Like VD+
23	$V_{\text {SS(A2) }}$	S	Analog ground
24	$V_{\text {REFL }}$	IQ	Reference voltages for E/W-DAC, V-DAC
25	$V_{\text {REFH }}$	IQ	Like $V_{\text {ReFL }}$
26	Ф2	I	Line flyback for H-delay compensation
27	PWM	Q/TTL	Control signal output

1.4 Pin Description (cont'd)

Pin No.	Symbol	Type	Description
28	VSYNC	I/TTL	V-sync input
29	HD	Q	Control signal output for H driver stage
30	TEST	I/TTL	Switching normal operation (TEST $=\mathrm{L}$) and test mode (TEST $=\mathrm{H}$: pins 7, 27, 31, 32, 33, 40, 44 are additional test pins)
31	FH1_2	I/TTL	Switching between $1 \mathrm{~F}_{\mathrm{H}}$ mode (L) and $2 \mathrm{~F}_{\mathrm{H}}$ mode (H) (Pin SELFH1_2 = 0)
32	CLEXT	I/TTL	Switching between internal (L) and external clock (H) ${ }^{1 / 1}$
33	SELFH1_2	I/TTL	Selection of switching between $1 \mathrm{~F}_{\mathrm{H}}$ mode and $2 \mathrm{~F}_{\mathrm{H}}$ mode SELFH1_2 $=0: 1 \mathrm{~F}_{\mathrm{H}} / 2 \mathrm{~F}_{\mathrm{H}}$ selected via pin $\mathrm{FH} 1 _2$ SELFH1_2 = 1:1 $\mathrm{F}_{\mathrm{H}} / 2 \mathrm{~F}_{\mathrm{H}}$ selected via $\mathrm{I}^{2} \mathrm{C}$-Bus register 00_{H}, Bit D5
34	$V_{\text {DD(A3) }}$	S	Analog supply
35	HSYNC	1	HSYNC input (CLEXT $=1:$ TTL; CLEXT $=0:$ analog ${ }^{1 /}$
36	$V_{\text {REFC }}$	I	Reference voltage for sync ADC
37	$V_{\text {SS(A3) }}$	S	Analog ground
38	$V_{\text {DD(}{ }^{\text {d }} \text {) }}$	S	Digital supply
39	$V_{\mathrm{SS}(\mathrm{D})}$	S	Digital ground
40	SSD	I/TTL	Disables softstart
41	$V_{\text {SS(A4) }}$	S	Analog ground
42	LF	IQ	PLL loop filter
43	$V_{\text {DD(A4) }}$	S	Analog supply
44	VOFFD	I/TTL	Defines default value of VOFF-Bit ($\mathrm{I}^{2} \mathrm{C}$-Bus register 00_{H}, Bit D7)

[^0]
1.5 Block Diagram

Figure 2

2 System Description

2.1 Functional Description

The main input signals are HSYNC with standard or doubled horizontal frequency and VSYNC with vertical frequencies of $50 / 100 \mathrm{~Hz}$ or $60 / 120 \mathrm{~Hz}$.
The VSYNC is processed in a noise reduction circuit to enable synchronization by worse transmission too.
The output signals control the horizontal as well as the vertical deflection stages and the east/west raster correction circuit.
The H-output signal HD compensates the delays of the line output stage and its phase can be modulated vertical frequent to remove horizontal distortions of vertical raster lines (V-Bow, V-Angle). Time reference is the middle of the front and back edge of the line flyback pulse. A positive HD pulse switches off the line output transistor. Maximal H-shift is about $4.5 \mu \mathrm{~s}\left(\right.$ for $\left.1 \mathrm{~F}_{\mathrm{H}}\right)$ or $2.25 \mu \mathrm{~s}\left(\right.$ for $\left.2 \mathrm{~F}_{\mathrm{H}}\right)$.
Picture tubes with $4: 3$ or 16:9 aspect ratio can be used by adapting the raster to the aspect ratio of the source signal.
The V-output saw-tooth signals VD- and VD+ controls a DC coupled output stage and can be disabled. Suitable blanking signals are delivered by the IC.
The east/west output signal E/W is a vertical frequent parabola of 4th order, enabling an additional corner correction, separately for the upper and lower part.
The pulse width modulated horizontal frequent output signal PWM is for optional use. It can be modulated between 1 and 215 steps. The step width is $4 \star t_{\mathrm{H}} / 864$.
The output D/A delivers a variable DC signal for general purpose.
The picture width and picture height compensation (PW/PH Comp) processes the beam current dependent input signal ABL with effect to the outputs E/W and VD to keep width and height constant and independent of brightness.
The alignment parameter Horizontal Shift Compensation enables to adjust the influence of the input signal ABL on the horizontal phase.
The selectable start up circuit controls the energy supply of the H-output stage during the receiver's run up time by smooth decreasing the line output transistors switching frequency down to the normal operating value (softstart). HD starts with about double the line frequency and converges within 85 ms to its final value. The high time is kept constant. The normal operating pulse ratio H / L is 45/55.
The protection circuit watches an EHT reference and the saw-tooth of the vertical output stage. H-output stage is switched off if the EHT succeeds a defined threshold or if the V-deflection fails (refer to page 46).

HPROT: Input	$V_{\mathrm{i}}<\mathrm{V} 2$	Continuous blanking
	$V_{\mathrm{i}}>\mathrm{V} 1$	HD disabled
	$\mathrm{V} 2 \leq V_{\mathrm{i}}<\mathrm{V} 1$	Operating range

VPROT: Vertical saw-tooth voltage
$V_{\mathrm{i}}<\mathrm{V} 1$ in first half of V-period or
$V_{\mathrm{i}}>\mathrm{V} 2$ in second half: HD disabled

The pin SCP delivers the composite blanking signal SCP. It contains burst $\left(V_{\mathrm{b}}\right), \mathrm{H}-$ blanking HBL (V_{HBL}) and selectable V-blanking (control bit SSC). The phase and width of the H -blanking period can be varied by $\mathrm{I}^{2} \mathrm{C}$ Bus. For the timing following settings are possible:
$B D=1$
$B D=0, B S E=0$ (default value)
$B D=0, B S E=1$ (alignment range)

SSC $=0$
SSC = 1
$: t_{\mathrm{BL}}=0$
: $t_{\mathrm{HBL}}=t_{\mathrm{f}}(\mathrm{H}$-flyback time)
: $t_{\text {HвL }}=(4 *$ H-blanking-time +1$) /$ CLL
: $t_{\mathrm{DBL}}=(\mathrm{H}$-shift $+4 * \mathrm{H}$-blanking-phase
-2 * H-blanking-time + 43)/CLL
$: t_{\mathrm{BL}}=t_{\mathrm{VBL}}$ during V -blanking period
: t_{BL} is always $t_{\text {HBL }}$

Figure 3

BG-pulse width t_{B} Delay to HSYNC t_{DB}

54 / CLL
if CLEXT = L-level: ($76-4$ * Internal-H-sync-phase) / CLL if CLEXT $=$ H-level: ($38-4$ * Internal-H-sync-phase) $/ \mathrm{CLL}$

2.2 Circuit Description

The HSYNC is reference for a numeric PLL. This PLL generates a clock which is phase locked to the incoming horizontal sync pulse and exactly 864 times faster then the horizontal frequency. In order to lock the internal frequency to the external sync signal positive horizontal sync pulses are required (see figure 4).

Figure 4
Incoming Signal HSYNC (CLEXT = 0)
Pulse width t_{w} for $\mathrm{I}^{2} \mathrm{C}$-Bus Bit 'HSWID' $=0$:
$3 \mu \mathrm{~s} \ldots 6.1 \mu \mathrm{~s} \quad$ low FH-range
Pulse width t_{w} for $\mathrm{I}^{2} \mathrm{C}$-Bus Bit 'HSWID' $=1$:

$$
\begin{array}{ll}
3 \mu \mathrm{~s} \ldots 8.8 \mu \mathrm{~s} & \text { low FH-range } \\
1.5 \mu \mathrm{~s} \ldots 4 . .4 \mu \mathrm{~s} & \text { high FH-range }
\end{array}
$$

Rise time $t_{\mathrm{r}}: 100 \mathrm{~ns}$ minimum (CLEXT $=0$)

The described input signal is first applied to an A/D converter. Conversion takes place with 6 Bits and a nominal frequency of 27 MHz . The digital PLL uses a low pass filter to obtain defined slopes for further measurements (PAL/NTSC applications). In addition the actual high and low level of the signal as well as a threshold value is evaluated and used to calculate the phase error between internal clock and external horizontal sync
pulse. By means of digital PI filtering an increment is gained from this. The PI filter can be set by the $\mathrm{I}^{2} \mathrm{C}$-Bus VCR bit so that the lock-in behavior of the PLL is optimal in relation to either the TV or VCR mode. Moreover it is possible to adapt the nominal frequency by means of $5 \mathrm{I}^{2} \mathrm{C}$-Bus bits (INCR4..INCRO) to different horizontal frequencies. An additional bus bit GENMOD offers the possibility to use the PLL as a frequency generator which frequency is controlled by the INCR bits.
Once an increment has been obtained, either from the Pl-filter or the $\mathrm{I}^{2} \mathrm{C}$ Bus, it can be used to operate the Digital Timing Oscillator. The DTO generates a saw-tooth with a frequency that is proportional to the increment. The saw-tooth is converted into a sinusoidal clock signal by means of sin ROM's and D/A converters and applied to an analog PLL which multiplies the frequency by 2 or 4 (depends on mode $1 F_{H}$ or $2 F_{H}$; for detailed explanation see pinning and $\mathrm{I}^{2} \mathrm{C}$-Bus description) and minimizes residual jitter. In this manner the required line locked clock is provided to operate the other functional parts of the circuit. If no HSYNC is applied to pin 35 the system holds its momentary frequency for 2040 lines and following resets the PLL to its nominal frequency. The status bit CON indicates the lock state of the PLL.
The system also provides a stable HS-pulse for internal use. The phase between this internal pulse and the external HSYNC is adjustable via $\mathrm{I}^{2} \mathrm{C}$-Bus bits HPHASE. It can be shifted over the range of one TV line.
An external clock (CLKI) can be provided by pin selection (CLEXT = H). The clock frequency has to be $864 * f_{\mathrm{HSYNC}}$. The external clock mode can not be used with 33.75 kHz and 35 kHz line frequency.

For effective noise suppression the VSYNC has to pass a window at first and is then processed in a flywheel logic. The window allows a VSYNC pulse only after a minimum number of lines from its predecessor and sets an artificial one after a maximum number of lines. The number of H-periods between two subsequent VSYNCs is stored and determines (after several checks) the following V-periods (internal synchronization). If incoincidence is detected between internal and external VSYNC, the system switches after a hysteresis of a defined number of V-periods to external synchronization and the checks are repeated.
Values which influence shape and amplitude of the output signals are transmitted as reduced binary values to the SDA 9361 via $I^{2} \mathrm{C}$ Bus. A CPU which is designed for speed reasons in a pipe line structure calculates in consideration of feedback signals (e.g.ABL) values which exactly represent the output signals. These values control after D/A conversion the external deflection and raster correction circuits.

The CPU firmware is stored in an internal ROM.

2.3 Reset Modes

The circuit is completely reset at power-on/off (timing diagram see figure 11) or if the pin RESN has L-level (timing diagram see figure 12). During standby operation some parts of the circuit are not affected (timing diagram see figure 12):

	Power-On-Reset	External Reset (pin RESN = Low)	Standby Mode ($\mathbf{I}^{2} \mathrm{C}$ Bit STDBY =1)
HD output	Low	Low	Active
H-protection	Inactive	Inactive	Inactive
V-protection	Inactive	Inactive	Inactive
$\mathrm{I}^{2} \mathrm{C}$ interface (SDA, SCL)	Tristate	Tristate	Ready
$\mathrm{I}^{2} \mathrm{C}$ register $01_{H} \ldots 1 \mathrm{C}_{\mathrm{H}}, 1 \mathrm{~F}_{\mathrm{H}}$	Set to default values	Set to default values	Set to default values
$\mathrm{I}^{2} \mathrm{C}$ register 00_{H}, $1 \mathrm{D}_{\mathrm{H}}, 1 \mathrm{E}_{\mathrm{H}}, 44_{\mathrm{H}} \ldots 48_{\mathrm{H}}$	Set to default values	Set to default values	Not affected
Status Bit PONRES	Set to $1^{1)}$	Set to $1^{1)}$	Not affected
$V_{\text {REFP, }}, V_{\text {REFH }} \cdot V_{\text {REFL }}$	Not affected	Not affected	Inactive
CPU	Inactive	Inactive	Inactive

${ }^{1)}$ Can only be read after Power-On-Reset is finished
Note: Power-On-Reset and RESN = Low state are deactivated after ca. 32 cycles of the X1/X2 oscillator clock and ca. 42 cycles of the CLL clock.
Standby state is deactivated after ca. 42 cycles of the CLL clock.

2.4 Frequency Ranges

\mathbf{H}	\mathbf{V}	\mathbf{n}_{L}
15.625 kHz	50 Hz	625 I
15.75 kHz	60 Hz	525 I
31.25 kHz	50 Hz	$625 \mathrm{NI} / 1250 \mathrm{I}$
	100 Hz	625 I
31.5 kHz	60 Hz	$525 \mathrm{NI} / 1050 \mathrm{I}$
	70 Hz	449 NI
	120 Hz	525 I
32.4 kHz	60 Hz	1080 I
33.75 kHz		
$35 \mathrm{kHz}^{1)}$	60 Hz	1125 I

1) Only with internal clock generation

The allowed deviation of all input line frequencies is max. $\pm 4.5 \%$.
n_{L} : number of lines per frame
$\mathrm{I}: \quad$ interlaced
NI: non interlaced
If NSA $=0$ (subaddress $01_{\mathrm{H}} / \mathrm{D} 5_{\mathrm{H}}$) number of lines per field is selfadaptable between 192 and 680 for each specified H -frequency.

$2.5 \quad I^{2} \mathrm{C}$-Bus Control

2.5.1 $\quad \mathrm{I}^{2} \mathrm{C}$-Bus Address

2.5.2 $\quad \mathrm{I}^{2} \mathrm{C}$-Bus Format

write:

| S | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | A | Subaddress | A | Data Byte | A | ***** |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | A | P |
| :--- |

read:

S	1	0	0	0	1	1	0	1	A	Status byte	A	Data Byte n	A	$* * * * *$	NA	P

Reading starts at the last write address n. Specification of a subaddress in reading mode is not possible.
S: Start condition
A: Acknowledge
P: Stop condition
NA: Not Acknowledge
An automatically address increment function is implemented.
After switching on the IC, all bits are set to defined states.

2.5.3 $\quad \mathrm{I}^{2} \mathrm{C}$-Bus Commands

Control item	을 흋	D7 D6 D5 D4 D3 D2 D1 D0	Allowed Range	Effective Range	Can be Disabled by Bit	Default Value if Disabled	Unit
Deflection control 0	00_{H}	see below	-	-	-	-	-
Deflection control 1	01_{H}	see below	-	-	-	-	-
Vertical shift	$02_{\text {H }}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
Vertical size	$03_{\text {H }}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
Vertical linearity	04 ${ }^{\text {H }}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
Vertical S-correction	$05_{\text {H }}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
Vertical EHT compensation ${ }^{1)}$	$06_{\text {H }}$	B7 B6 B5 B4 B3 B2 B1 B0	$0 . .255$	$0 . .255$	-	-	-
Horizontal size	07_{H}	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
Pin phase	$08_{\text {H }}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
Pin amp	$09^{\text {H }}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
Upper corner pin correction	$0 \mathrm{~A}_{\mathrm{H}}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
Lower corner pin correction	$0 \mathrm{~B}_{\mathrm{H}}$	B7 B6 B5 B4 B3 B2 B1 B0	-128.. 127	-128.. 127	-	-	-
Horizontal EHT compensation ${ }^{1)}$	$0 \mathrm{C}_{\mathrm{H}}$	B7 B6 B5 B4 B3 B2 B1 B0	$0 . .255$	$0 . .255$	-	-	-
Horizontal shift	$0 \mathrm{D}_{\mathrm{H}}$	B6 B5 B4 B3 B2 B1 B0 X	-64..63	-64..63	-	-	1/CLL
Vertical angle	$0 \mathrm{E}_{\mathrm{H}}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
Vertical bow	$0 \mathrm{~F}_{\mathrm{H}}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	-128..127	-	-	-
PWM start	$10^{\text {H }}$	B7 B6 B5 B4 B3 B2 B1 B0	$0 . .255$	$0 . .215$	-	-	4/CLL
D/A ${ }^{17}$	11_{H}	B5 B4 B3 B2 B1 B0 X X	-32.31	-32.31	-	-	-
Vertical blanking time ${ }^{1)}$	12_{H}	X B6 B5 B4 B3 B2 B1 B0	$0 . .127$	a)	BSE $=0$	b)	lines
Horizontal blanking time	13_{H}	X X B5 B4 B3 B2 B1 B0	$0 . .63$	$0 . .63$	BSE = 0	H-flyback	4/CLL
Start vertical scan ${ }^{1)}$	$14_{\text {H }}$	B7 B6 B5 B4 B3 B2 B1 B0	-128..127	c)	SSE = 0	9	line
Horizontal blanking phase	$15_{\text {H }}$	B5 B4 B3 B2 B1 B0	-32..31	-32..31	-	-	4/CLL
Vertical scan width $0{ }^{11}$	15_{H}	B9 B8	0..+3	d)	STE = 0	e)	256 lines
Vertical scan width 1 ${ }^{1)}$	16_{H}	B7 B6 B5 B4 B3 B2 B1 B0	$0 . .255$	d)	STE $=0$	e)	lines
Guard band ${ }^{1)}$	17_{H}	X X ${ }^{\text {B5 }}$ B4 B3 B2 B1 B0	$0 . .63$	$0 . .63$	$\mathrm{GBE}=0$	3	half lines
Start reduced scan ${ }^{1)}$	$18_{\text {H }}$	X X B5 B4 B3 B2 B1 B0	$0 . .63$	0, $2 . .63$	$\begin{gathered} \hline \text { SRSE }= \\ 0 \end{gathered}$	2	line
Vertical sync control	19_{H}	see below	-	-	-	-	-
Min. No. of lines / field ${ }^{1)}$	$1 \mathrm{~A}_{\mathrm{H}}$	B7 B6 B5 B4 B3 B2 B1 B0	$0 . .255$	$0 . .255$	-	-	2 lines
Max. No. of lines / field ${ }^{1)}$	$1 \mathrm{~B}_{\mathrm{H}}$	B7 B6 B5 B4 B3 B2 B1 B0	$0 . .255$	$0 . .255$	-	-	2 lines
AFC EHT compensation ${ }^{1)}$	$1^{1} \mathrm{C}_{\mathrm{H}}$	B5 B4 B3 B2 B1 B0 X X	-32.31	-32.31	-	-	-
Internal PLL control	$1 \mathrm{D}_{\mathrm{H}}$	see below	-	-	-	-	-
Internal H-sync phase	$1 \mathrm{E}_{\mathrm{H}}$	B7 B6 B5 B4 B3 B2 B1 B0	-128.. 127	-96..119	-	-	4/CLL
PWM width	$1 \mathrm{~F}_{\mathrm{H}}$	B7 B6 B5 B4 B3 B2 B1 B0	$0 . .255$	$0 . .215$	PWM width=0	15	4/CLL
Universal register 1	45_{H}	see below	-	-	-	-	-
Universal register 3	47_{H}	see below	-	-	-	-	-
Internal voltage Ref control	48_{H}	see below	-	-	-	-	-

[^1]a) The effective range for Vertical Blanking Time:

$16 \ldots 127$ (absolute value)	if STE $=0$
$0 \ldots 127$ (offset value)	if STE $=1$.

b) The "default value if disabled" for Vertical Blanking Time:

21 (absolute value) if STE $=0$
8 (offset value) if STE = 1 .
c) The effective range for Start Vertical Scan:

$$
\begin{aligned}
& 2 \ldots 127 \text { (absolute value) } \begin{array}{l}
\text { if } \text { STE }=0 \\
\text { if } S T E=1 \text { and } N S A=1 \\
-128 \ldots 127 \text { (offset value) }
\end{array} \\
& \text { if } \text { STE }=1 \text { and } N S A=0 .
\end{aligned}
$$

d) The effective range for Vertical Scan (total width: 10 Bit): 160 ... 684 lines.
e) The "default value if disabled" for Vertical Scan equals the number of lines of the source signal reduced by the control value for Start Vertical Scan. (E.g.: input signal: 262 lines per field; Start vertical scan $=8$ lines; then (if $S S E=1, S T E=0$) vertical scan $=262-8=254$ lines.
At power on the RAM containing the control items is cleared. Therefore all data are zero by default (if not otherwise defined) before transferring individual values via $\mathrm{I}^{2} \mathrm{C}$ Bus.
Allowed values out of the effective range are limited, e. g. Vertical blanking time $=3$ is limited to 16 if STE $=0$ (that means a minimum of 16 lines is blanked).
There are five bits (SRSE, BSE, SSE, STE, GBE) in the deflection control byte 1 for disabling some control items. If one of these bits is " 0 ", the value of the corresponding control item will be ignored and replaced by the value "default value if disabled" in the table above.

2.5.4 Detailed Description

The Deflection Control Byte $\mathbf{0}$ includes the following bits:

VOFF	STDBY	$2 F H$	BD	RABL	VR1	VR0	HDE

VOFF: Vertical off
0 : normal vertical output due to control items
1: vertical saw-tooth is switched off, vertical protection is disabled
Default value depends on pin 44 (VOFFD)
VOFFD = Low: 0
VOFFD = High: 1

STDBY: Stand-by mode
0 : normal operation
1: stand-by mode (all internal clocks are disabled)

2FH: Setting of line frequency
0: low range of line frequency (14900 Hz ... 17650 Hz)
1: high range of line frequency ($29800 \mathrm{~Hz} \ldots 35300 \mathrm{~Hz}$)
Note: this bit is don't care if pin SELFH1_2 has L-level
BD: \quad Blanking disable
0 : horizontal and vertical blanking enabled
1: horizontal and vertical blanking disabled

RABL: ABL input range
0: 2 V ... 3 V
1: 0 V ... 4 V

VR1 ... VR0: Reduction of the vertical size
00: 100% V-size (16:9 source on 16:9 display)
01: 75% V-size (16:9 source on $4: 3$ display)
10: 66% V-size (two $4: 3$ sources on 16:9 display)
11: 50% V-size (two 16:9 sources on 16:9 display)

HDE: HD enable
0 : line is switched off (HD disabled, that is L-level)
1: line is switched on (HD enabled)
Default value depends on pin 40 (SSD)
SSD = Low: 0
SSD = High: 1

The Deflection Control Byte 1 includes the following bits:

0	X	NSA	STE	GBE	SRSE	SSE	BSE

NSA: \quad No self adaptation
0 : self adaptation on
1: self adaptation off

STE: Scan time enable
0: control items for vertical scan width 0 and width 1 are disabled
1: control items for vertical scan width 0 and width 1 are enabled

GBE: \quad Guard band enable
0 : control item for guard band is disabled
1: control item for guard band is enabled

SRSE: Start reduced scan enable
0: control item for start reduced scan is disabled
1: control item for start reduced scan is enabled

SSE: Start scan enable
0 : control item for start vertical scan is disabled
1: control item for start vertical scan is enabled

BSE: Blanking select enable
0: control items for blanking times are disabled
1: control items for blanking times are enabled

The Vertical Sync Control Byte includes the following bits:

X	X	SSC	NR	NI	NL 2	NL 1	NLO

SSC: \quad Sandcastle without VBL
0 : output SCP with VBL component
1: output SCP without VBL component

NR: Noise reduction
0 : no noise reduction of the vertical sync
1: noise reduction of the vertical sync

NI: Non interlace
0 : interlace depends on source
1: no interlace

NL2 ... NL0: Number of lines per field when NR = 1 and no vertical sync at the input is detected

NL2	NL1	NL0	Number of Lines per Field
0	0	0	262.5
0	0	1	312.5
0	1	0	525
0	1	1	562.5
1	X	X	625

The Internal PLL Control Byte includes the following bits:

HSWID	GENMOD	VCR	INCR4	INCR3	INCR2	INCR1	INCR0

HSWID: Maximum width of HSYNC
0: $\quad 6.1 \mu \mathrm{~s} \quad$ for low FH-range
$3.1 \mu \mathrm{~s} \quad$ for high FH-range
1: $\quad 8.8 \mu \mathrm{~s}$ for low FH-range
$4.0 \mu \mathrm{~s} \quad$ for high FH-range

GENMOD: Clock generator mode
0: normal PLL mode
1: generator mode (fixed frequency output, controlled by INCR..)

VCR: PLL filter optimized for
0 : TV mode
1: VCR mode

INCR4 ... 0: Nominal PLL output frequency
for low FH-range:
INCR = INT((FH * 110592) / FQ-64.625)
for high FH -range:
INCR $=\operatorname{INT}((\mathrm{FH} * 55296) / F Q-64.625)$
(for typical values see table below)
specified range for:
GENMOD $=0: \quad 6 \leq \operatorname{INCR} \leq 14$
GENMOD = 1: $\quad 3 \leq \operatorname{INCR} \leq 18$
($\mathrm{FQ}=24.576 \mathrm{MHz}$)

Application	FH $[\mathrm{Hz}]$	INCR
PAL	15625	6
NTSC	15750	6
PAL $(100 \mathrm{~Hz})$	31250	6
NTSC $(120 \mathrm{~Hz})$	31500	6
ATV	32400	8
MUSE	33750	11
Macintosh	35000	14

Default value: $\operatorname{INCR}=6$

Warning:

1)A change of INCR or 2FH causes spontaneous changes of the generated clock frequency greater than the specified 4.5%.
Switching from PLL mode to Generator mode (GENMOD) with constant INCR values does not result in exceeding the specified frequency deviation range.
2) If pin SSD has H -level the output signal HD starts immediately after power on. In this case the starting horizontal frequency is either 15.75 kHz (if SELFH1_2 has H-level or if SELFH1_2 and FH1_2 have L-level) or 31.5 kHz (if SELFH1_2 has L-level and FH1_2 H-level). Starting with Muse or Macintosh standard requires L-level at SSD so that INCR can be changed before enabling HD with HDE $=1$.
3) Using external clock at pin 1, CLKI, (pin 32, CLEXT $=1$): no internal protection against missing clock pulses is provided.
4)In order to guarantee error free operation of the build in soft start circuit the input frequency has to be inside the lock range of the PLL ($+/-4.5 \%$ of standard input frequency)

The Universal Register $\mathbf{1}$ (Subaddress $\mathbf{4 5}_{\mathrm{H}}$) includes the following bit:

0	0	NOISY VCR	0	0	0	0	0

NOISYVCR: Handling of noisy input signals in VCR mode
0 : normal handling
1: improved handling
Note: this bit is don't care if bit VCR $=0$ (TV mode)

The Universal Register 3 (Subaddress $\mathbf{4 7}_{\mathrm{H}}$) includes the following bits:

0	0	0	KILL_ZIP	TC_3RD	0	0	0

KILL_ZIP: Top flutter suppression
0 : no top flutter suppression
1: top flutter suppression
(phase jumps max. $\pm 12 \mu \mathrm{~s}$ for low FH-range
rsp. max. $\pm 6 \mu$ s for high FH-range)

TC_3RD: Third time constant
0 : slow VCR time constant
1: fast VCR time constant
Note: this bit is don't care if bit VCR $=0$ (TV mode)

The Internal Voltage Ref. Control Byte includes the following bits:

BANDG4	BANDG3	BANDG2	BANDG1	BANDG0	BANDG OFF	BANDG4 OFF	0

BANDG4 ... Adjustment of internal bandgap reference
BANDGO: 10000: Reference Output voltage min
01111: Reference Output voltage max
Typical adjustment range is 0.5 V .

BANDGOFF: Bandgap Off
0 : $\quad V_{\text {REFH }}, V_{\text {REFL }}$ derived internally from $V_{\text {REFP }}$

1: external references on $V_{\text {REFP }}, V_{\text {REFH }}, V_{\text {REFL }}$ have to be applied (in this case BANDG4OFF must be $=1$)

BANDG4OFF: Bandgap 4 V Off
0 : internal bandgap reference is used for $V_{\text {REFP }}$
1: external reference on $V_{\text {REFP }}(4 \mathrm{~V})$ has to be applied

The Status Byte includes the following bits:

HPON	VPON	CON	-	-	-	-	PONRES

HPON: protection on
0 : normal operation of the line output stage
1: high level on input HPROT has switched off the line

VPON: V-protection on
0 : normal operation of the vertical output stage
1: incorrect signal on input VPROT has switched off the line

CON: Coincidence not
0: H-coincidence detected
1: no H -coincidence detected

PONRES: Power-On-Reset
0 : after bus master has read the status byte
1: after each detected reset
Note: PONRES is reset after this byte has been read.

2.5.5 Explanation of Some Control Items

D/A
This item controls directly a 6 Bit D/A Converter at the output D/A that can be used for general purpose.

Start Vertical Scan

If enabled (SSE $=1$) this control item defines the start of calculation of the vertical sawtooth, the east/west parabola and the vertical function required for the vertical modulated output HD.

Vertical Scan (width0 and width1)

The total width of this control item is 10 Bit. Therefore two registers (width 0 and width1) are necessary. If enabled ($\mathrm{STE}=1$) it defines the duration of the vertical scan. When the vertical period has more lines than the sum of Start Vertical Scan and Vertical Scan, the calculation of the vertical saw-tooth, the east/west parabola and the vertical parabola required for HD stops so that the corresponding output signals remain unchanged till the next vertical synchron pulse.

Guard Band

This control item is useful for optimizing self adaptation. Video signals with different number of lines in consecutive fields (e. g. VCR search mode) must not start the procedure of self adaptation. But switching between different TV standards has to change the slope of the vertical saw-tooth getting always the same amplitude (self adaptation). To avoid problems with flicker free TV systems which have alternating number of lines per field an average value of four consecutive fields is calculated. If the deviation of these average values (e.g. PAL: 312.5 lines or 625 half lines) is less or equals Guard Band, no adaptation takes place. When it exceeds Guard Band, the vertical slope will be changed.

Start Reduced Scan

If enabled (SRSE $=1$) this item defines the start of the D/A conversion of the calculated vertical saw-tooth. From begin of the vertical flyback to the line defined by Start Reduced Scan the output signals VD+, VD- remain unchanged (flyback level). Other outputs are not affected.
a) control bits VR1, VR0 \# 00 (reduction of vertical size) In this case the byte is useful for e.g. displaying 16/9 source format on $4 / 3$ picture tubes without visible RGB lines generated of the automatic cut-off control (partial overscan). It defines the start of the reduced amplitude (factors $0.5,0.66,0.75$) of the vertical saw-tooth (refer page 39). When Start Reduced Scan = 0 the reduction takes place over all lines including vertical flyback.
b) control bits VR1, VR0 $=00$ (no reduction of vertical size)

If Start Reduced Scan > Start Vertical Scan the D/A conversion of the saw-tooth starts (Start Reduced Scan-Start Vertical Scan) lines after begin of the calculation. This causes a jump of the output voltage VD+, VD- from flyback to scan level. It may be useful to hide the automatic cut-off control lines if no overscan is desired (e.g. for VGA display). If Start Reduced Scan <= Start Vertical Scan this byte has no effect.

Vertical EHT Compensation

This item controls the influence of the beam current dependent input signal ABL on the outputs VD+ and VD- according to the following equation:
$\Delta V_{\mathrm{VDPP}}=\Delta V_{\mathrm{ABL}} * \frac{\text { Vertical EHT compensation }}{512} * 0,57^{1)} \quad($ if RABL $=0)$
$\Delta V_{\mathrm{VDPP}}=\Delta V_{\mathrm{ABL}} * \frac{\text { Vertical EHT compensation }}{2048} * 0,57^{1)} \quad($ if RABL $=1)$
$\Delta V_{\text {VDPP }}$: variation of VD+ and VD- peak-to-peak voltage
ΔV_{ABL} : variation of ABL input voltage
${ }^{1)}$ The factor 0.57 depends on $V_{\text {REFP, }} V_{\text {REFH }}, V_{\text {REFL }}$
If Vertical EHT Compensation $=0$ the outputs VD+ and VD- are independent of the input signal $A B L$.

Horizontal EHT Compensation

This item controls the influence of the input signal $A B L$ on the output E / W according to the following equation:

$$
\begin{aligned}
& \Delta V_{\mathrm{EW}}=\Delta V_{\mathrm{ABL}} * \frac{\text { Horizontal EHT compensation }}{128} * 2,12^{1)} \quad(\text { if RABL }=0) \\
& \Delta V_{\mathrm{EW}}=\Delta V_{\mathrm{ABL}} * \frac{\text { Horizontal EHT compensation }}{512} * 2,12^{1)} \quad(\text { if RABL }=1)
\end{aligned}
$$

ΔV_{EW} : variation of E/W output voltage
ΔV_{ABL} : variation of ABL input voltage
${ }^{1)}$ The factor 2.12 depends on $V_{\text {REFP, }}, V_{\text {REFH }}, V_{\text {REFL }}$
If Horizontal EHT Compensation $=0$ the output E / W is independent of the input signal ABL.

AFC EHT Compensation

Deviation of the horizontal phase caused by high beam current (e.g. white bar) can be eliminated by this control item. The beam current dependent input signal ABL is multiplied by AFC EHT Compensation.

Additional to the control items Vertical angle, Vertical bow and Horizontal shift, this product influences the horizontal phase at the output HD according to the following equation:
$\Delta \phi=\Delta V_{\mathrm{ABL}} * \frac{\mathrm{AFC} \mathrm{EHT} \text { compensation }}{64} * \frac{52^{1)}}{\mathrm{CLL}} \quad($ if $\mathrm{RABL}=0)$
$\Delta \phi=\Delta V_{\mathrm{ABL}} * \frac{\mathrm{AFC} \mathrm{EHT} \mathrm{compensation}}{256} * \frac{52^{1)}}{\mathrm{CLL}} \quad($ if $\mathrm{RABL}=1)$
$\Delta \phi \quad$:variation of horizontal phase at the output HD
(positive values: shift left, negatives values: shift right)
ΔV_{ABL} :variation of ABL input voltage (units: Volt)
CLL $\quad: 864$ * F_{H}
${ }^{1)}$ The factor 52 depends on $V_{\text {REFP }}$

Vertical Blanking Time (VBT)

VBT defines the vertical blanking pulse VBL which is part of the output signal SCP. VBL is synchronized with the leading edge of HSYNC. It always starts and stops at the beginning of line and never in the center.
a) Case of $\mathrm{STE}=0$

In this case the control item Vertical blanking time defines the duration of the V-blanking pulse (VBL) exactly in number of lines. Because of IC internal limitations 16 through 127 lines can be blanked. If BSE $=0$ the control item Vertical blanking time is disabled and always 21 lines (default value if disabled) are blanked.
After power on the control bit BSE is 0 . Therefore 21 lines will be blanked before any programming of the IC. If Vertical Blanking Time is less or equals 21 lines, VBL starts (point A in fig. above) always 0 ... 0.5 line (new odd field) or 0.5 ... 1 line (new even field) prior to the vertical flyback. Otherwise VBL is concentric to a fictitious vertical flyback period of 21 lines, that means VBL starts (VBT-21) / 2 lines at the end of an odd field or (VBT-20) / 2 at the end of an even field prior to point A. Possible start points are only the beginning of line.
\qquad

Figure 5
Vertical Blanking Pulse VBL when STE = 0 and Number of Lines per

Field $=$ Constant

b) Case of STE = 1

In this case the control item Vertical blanking time is an extension for the V-blanking pulse.

- If $\mathrm{BSE}=1$ and VBT $=0$ the V-blanking pulse has its minimum: it starts always at end of scan (line B in Fig. below) and ends at start of scan (line C) defined by the control items Start Vertical Scan (if SSE = 1) and Vertical Scan.
- BSE $=1$ and $(128>$ VBT $>0)$ extend the V-blanking pulse according to the following relationship
(If VBT > 127 this value is ignored and replaced by VBT - 128):
VBL starts VBT / 2 lines (even field) respectively (VBT + 1) / 2 lines (odd field) prior to line B.
VBL ends (VBT + 1) / 2 lines (even field) respectively VBT / 2 lines (odd field) after end of line C.
Possible start points are only the beginning of line.
- If $\mathrm{BSE}=0$ (after power on) the control item Vertical Blanking Time is disabled and VBL starts 4 lines prior to end of scan (line B) and ends 4 lines after start of scan (line C).

Figure 6
Vertical Blanking Pulse VBL when STE $=1$

Minimum Number of Lines per Field

It defines the minimum number of lines per field for the vertical synchronisation. If the TV standard at the inputs VSYNC and HSYNC has less lines per field than defined by Minimum Number of Lines per Field no synchronisation is possible. The relationship between Minimum Number of Lines per Field and the minimum number of lines is given in the following table:

Minimum Number of Lines per Field	Minimum Number of Lines per Field
0	192
1	194
\ldots	\ldots
127	446
128	448
\ldots	\ldots
254	700
255	702

Maximum Number of Lines per Field

It defines the maximum number of lines per field for the vertical synchronisation. If the TV standard at the inputs VSYNC and HSYNC has more lines per field than defined by Maximum Number of Lines per Field no synchronisation is possible. The relationship between Maximum Number of Lines per Field and the maximum number of lines is given in the following table:

Maximum Number of Lines per Field	Maximum Number of Lines per Field
0	702
1	192
2	194
\ldots	\ldots
127	444
128	446
\ldots	\ldots
255	700

Most Important V-Deflection Modes for 4:3 CRT

$\begin{aligned} & \hline \mathbf{O} \\ & \text { O } \end{aligned}$	Description	Characteristics	Notes	VR1 VRO	NSA	SRSE	GBE	STE	SSE
N0	Normal mode (for 4:3 source, Letterbox) with default settings	Self adaptation scan start = line 9 start of V-ramp = line 9 scan time: depends on source signal guard band = 1.5 lines	Mode after power on	00	0	0	0	0	0
N1	Normal mode (for 4:3 source, Letterbox) with user defined values	Self adaptation scan start = Start Vertical Scan if (Start Reduced Scan>Start Vertical Scan) start of V-ramp = Start Reduced Scan else start of V-ramp = Start Vertical Scan scan time: depends on source signal guard band = Guard Band/2 [lines]	Start of scan adjustable start of V-ramp adjustable guard band adjustable	00	0	1	1	0	1
S0	Shrink mode 75\% (for 16:9 source) with default settings	Self adaptation scan start = line 9 start of reduced V-ramp = line 9 scan time: depends on source signal guard band = 1.5 lines		01	0	0	0	0	0
S1	Shrink mode 75\% (for 16:9 source) with user defined values	Self adaptation scan start = Start Vertical Scan if (Start Reduced Scan>Start Vertical Scan) start of reduced V-ramp = Start Reduced Scan else start of reduced V-ramp = Start Vertical Scan scan time: depends on source signal guard band = Guard Band/2 [lines]	Start of scan adjustable start of reduced V-ramp adjustable guard band adjustable	01	0	1	1	0	1

Most Important V-Deflection Modes for 16:9 CRT

$\begin{aligned} & \text { O} \\ & \text { D } \end{aligned}$	Description	Characteristics	Notes	$\begin{aligned} & \text { VR1 } \\ & \text { VR0 } \end{aligned}$	NSA	SRSE	GBE	STE	SSE
N0	Normal mode (for 16:9 or 4:3 source) with default settings	Self adaptation scan start = line 9 start of V-ramp = line 9 scan time: depends on source signal guard band $=1.5$ lines	Mode after power on	00	0	0	0	0	0
N1	Normal mode (for 16:9 or 4:3 source) with user defined values	Self adaptation scan start = Start Vertical Scan if (Start Reduced Scan>Start Vertical Scan) start of V-ramp = Start Reduced Scan else start of V-ramp = Start Vertical Scan scan time: depends on source signal guard band = Guard Band/2 [lines]	Start of scan adjustable start of V-ramp adjustable guard band adjustable	00	0	1	1	0	1
Z	Zoom mode (for 4:3 source, Letterbox)	```scan start = (number_of_lines - Vertical Scan)/2 + 8 scan time = Vertical Scan```	Vertical scan controls zoom factor	00	0	X	X	1	0
SC	Scroll mode (for 4:3 source, Letterbox)	```Scan start = (number_of_lines - Vertical Scan)/2 + 8 + Start Vertical Scan scan time = Vertical Scan```	Like above; Startvertical scan can be additionally used for adjustment of picture phase	00	0	X	X	1	1
M	Manual mode (for 4:3 source, Letterbox)	$\begin{aligned} & \text { Scan start = Start Vertical Scan } \\ & \text { scan time = Vertical Scan } \end{aligned}$	Scan start and scan time are separately adjustable	00	1	X	X	1	X
S2	Shrink mode 66\% (for two 4:3 sources) with default settings	Self adaptation scan start = line 9 start of reduced V-ramp $=$ line 9 scan time: depends on source signal guard band $=1.5$ lines		10	0	0	0	0	0
S3	Shrink mode 50\% (for two 16:9 sources) with default settings	Self adaptation scan start = line 9 start of reduced V-ramp = line 9 scan time: depends on source signal guard band = 1.5 lines		11	0	0	0	0	0

3 Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit	Remark
		min.	max.		
Operating temperature	T_{A}	-20	70	${ }^{\circ} \mathrm{C}$	
Storage temperature	T_{stg}	-40	125	${ }^{\circ} \mathrm{C}$	
Junction temperature	T_{J}		125	${ }^{\circ} \mathrm{C}$	
Soldering temperature	T_{S}		260	${ }^{\circ} \mathrm{C}$	
Input voltage	V_{l}	$V_{\mathrm{SS}}-0.3 \mathrm{~V}$	$V_{\mathrm{DD}}+0.3 \mathrm{~V}$		
Output voltage	V_{Q}	$V_{\mathrm{SS}}-0.3 \mathrm{~V}$	$V_{\mathrm{DD}}+0.3 \mathrm{~V}$		
Supply voltages	V_{DD}	-0.3	6	V	
Supply total voltage differentials		-0.25	0.25	V	${ }^{11}$
Total power dissipation	P_{tot}		0.85	W	
Latch-up protection		-100	100	mA	All inputs/outputs

1) Between any internally non-connected supply pin of the same kind.

All $V_{\mathrm{DD}(\mathrm{D})}$ - and $V_{\mathrm{DD}(\mathrm{A})}$ - Pins are connected internally by about 3Ω
The $V_{\mathrm{SS}(\mathrm{D})}$-Pins are connected internally by about 3Ω
Note: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions or at any other condition beyond those indicated in the operational sections of this specification is not implied.

3.1 Recommended Operating Conditions

Parameter	Symbol	Limit Values			Unit	Remark
		min.	nom.	max.		
Supply voltages	V_{DD}	4.5	5	5.5	V	
Ambient temperature	T_{A}	-20	25	70	${ }^{\circ} \mathrm{C}$	For analog parameters: $0^{\circ} \mathrm{C}$

TTL Inputs: CLKI, VSYNC, TEST, FH1_2, SELFH1_2, CLEXT, SSD, VOFFD, RESN

H-input voltage	V_{IH}	2.0		V_{DD}	V	
L-input voltage	V_{IL}	0		0.8	V	

Input VPROT

Threshold V1		1.4	1.5	1.6	V	$V_{\text {REFP }}=4 \mathrm{~V}$
Threshold V2		0.9	1.0	1.1	V	$V_{\text {REFP }}=4 \mathrm{~V}$

Input HPROT

Threshold V1		3.9	4	4.1	V	$V_{\text {REFP }}=4 \mathrm{~V}$
Threshold V2	2.1	2.4	2.7	V	$V_{\text {REFP }}=4 \mathrm{~V}$	

Input ABL

L-input voltage	V_{IL}		2		V	$V_{\mathrm{REFP}}=4 \mathrm{~V}$ RABL
			0		V	$V_{\text {REFP }}=4 \mathrm{~V} \mathrm{RABL}=1$
Full range input voltage		3		V	$V_{\text {REFP }}=4 \mathrm{~V}$ RABL	
		4		V	$V_{\text {REFP }}=4 \mathrm{~V} \mathrm{RABL}=1$	

Reference Voltage Input Pins (Internal Voltage Ref. Control Byte Reg 48H = 00000110)

$V_{\text {REFP }}$ input voltage	$V_{\text {VREFP }}$		4		V	
$V_{\text {REFH }}$ input voltage	$V_{\text {VREFH }}$		2.5		V	
$V_{\text {REFL }}$ input voltage	$V_{\text {VREFL }}$		1.2		V	
$V_{\text {REFN }}$ input voltage	$V_{\text {VREFN }}$		0		V	
$V_{\text {REFC }}$ input voltage	$V_{\text {VREFC }}$		5		V	Independent of register 48_{H}, max $=V_{\text {DD }}$

3.1 Recommended Operating Conditions (cont'd)

Parameter	Symbol	Limit Values			Unit	Remark
		min.	nom.	max.		

Input $\Phi 2$

L-input voltage	V_{IL}	0		0.7	V	$V_{\text {REFP }}=4 \mathrm{~V}$
H-input voltage	V_{IH}	2.0		V_{DD}	V	$V_{\text {REFP }}=4 \mathrm{~V}$

Input HSYNC (CLEXT = 0)

Input voltage range	V_{HSpp}	2		V_{DD}	V	See page 12
Input voltage low level	V_{HSmin}	0			V	See page 12
Input voltage high level	V_{HSmax}			V_{DD}		See page 12
Pulse width (HSWID $=0$)	t_{w}	3.0		6.1	$\mu \mathrm{~s}$	Low FH-range
		1.5		3.1	$\mu \mathrm{~s}$	High FH-range
Pulse width (HSWID $=1)$	t_{w}	3.0		8.8	$\mu \mathrm{~s}$	Low FH-range
		1.5		4.0	$\mu \mathrm{~s}$	High FH-range
Rise time	t_{r}	100			ns	

Input HSYNC (CLEXT = 1)

L-input voltage	V_{IL}	0		0.8	V	
H-input voltage	V_{IH}	2.0		V_{DD}	V	
Setup time	t_{SU}	4			ns	Referred to falling edge of CLKI
Hold time	t_{H}	12			ns	Referred to falling edge of CLKI
Input VSYNC						
Pulse width high		100		$100 / f_{\mathrm{H}}$	ns	$\mathrm{FH} 1 _2=1, \mathrm{NI}=0$
Pulse width high		200		$100 / f_{\mathrm{H}}$	ns	$\mathrm{FH} 1 _2=0, \mathrm{NI}=0$
Pulse width high		$1.5 / f_{\mathrm{H}}$		$100 / f_{\mathrm{H}}$		$\mathrm{NI}=1$

3.1 Recommended Operating Conditions (cont'd)

Parameter	Symbol	Limit Values			Unit	Remark
		min.	nom.	max.		

Input CLKI (External Clock Generation, CLEXT = High)

Input frequency	f_{1}	12.5	13.5	15	MHz	Low FH-range
		25	27	30	MHz	High FH-range

Quartz Oscillator Input / Output X1, X2

Crystal frequency			24.576		MHz	Fundamental crystal type, e.g. Saronix 9922 520 00282
Crystal resonant impedance				40	Ω	
External capacitance			27		pF	See Application information

$\mathrm{I}^{2} \mathrm{C}$ Bus (All Values are Referred to min. $\left(V_{\mathrm{IH}}\right)$ and max. $\left(V_{\mathrm{IL}}\right)$

High-level input voltage	V_{IH}	3		V_{DD}	V	
Low-level input voltage	V_{IL}	0		1.5	V	
SCLK clock frequency	f_{SCLK}	0		400	kHz	
Rise times of SCLK, SDAT	t_{R}			0.3	$\mu \mathrm{~s}$	$f_{\mathrm{SCLK}}=400 \mathrm{kHz}$
Fall times of SCLK, SDAT	t_{F}			0.3	$\mu \mathrm{~s}$	
Set-up time DATA	$t_{\mathrm{SU} ; \mathrm{DAT}}$	100			ns	
Hold time DATA	$t_{\mathrm{HD} ; \mathrm{DAT}}$	0			ns	
Load capacitance	C_{L}			400	pF	

3.2 Characteristics (Assuming Recommended Operating Conditions)

Parameter	Symbol	Limit Values			Unit	Remark
		min.	nom.	max.		
Average supply current	I_{CC}		90	150	mA	
Stand-by supply current				25	mA	

Output Pins: SCAN, PWM

Output low level	V_{OL}			0.4	V	$I_{\mathrm{O}}=1 \mathrm{~mA}$
Output high level	V_{OH}	2.8			V	$I_{\mathrm{O}}=-1 \mathrm{~mA}$

Input / Output SDAT

| Output low level | V_{OL} | | 0.6 | V | $I_{\mathrm{O}}=6 \mathrm{~mA}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Output SCP

Output low level	V_{OL}	0		1	V	$I_{\mathrm{O}}=1 \mathrm{~mA}$
Output HBL level	V_{OHBL}	$V_{\mathrm{DD}} / 2$ -0.4 V	$V_{\mathrm{DD}} / 2$	$V_{\mathrm{DD}} / 2$ +0.4 V		$\left\|I_{\mathrm{O}}\right\|=100 \mu \mathrm{~A}$
Output high level	V_{OH}	4.0		V_{DD}	V	$I_{\mathrm{O}}=-1 \mathrm{~mA}$

DAC Output D/A

DAC resolution			6		Bit	
DAC output low			1		V	$V_{\text {REFP }}=4 \mathrm{~V}$
DAC output high			3.953		V	$V_{\text {REFP }}=4 \mathrm{~V}$
Load capacitance	C_{L}			30	pF	
Output load		20			$\mathrm{k} \Omega$	
Offset error		-3%		3%		$V_{\text {REFP }}=4 \mathrm{~V}$
Gain error		-3%		3%		$V_{\text {REFP }}=4 \mathrm{~V}$
INL		-1		1	LSB	
DNL	-0.5		0.5	LSB		

DAC Output E/W

DAC resolution			10		Bit	Linear range: $100 \ldots 900$
DAC output low			1.45		V	Input data $=100^{1)}$

3.2 Characteristics (Assuming Recommended Operating Conditions) (cont'd)

Parameter	Symbol	Limit Values			Unit	Remark
		min.	nom.	max.		
DAC output high			3.48		V	Input data $=900^{1)}$
Load capacitance	C_{L}			30	pF	
Output load		20			$\mathrm{k} \Omega$	
Zero error		-2%		2%		DAC output voltage $=2.5 \mathrm{~V} 2)$
Gain error		-5%		5%		$2)$
INL		-0.2%		0.2%		$2)$
DNL	-0.1%		0.1%		$2)$	

[^2]
DAC Output VD+, VD-

DAC resolution			14		Bit	Linear range: $1500 \text {... } 15000$
DAC output low (VD-)			1.44		V	Input data $=1500^{1)}$
DAC output high (VD-)			3.58		V	Input data $=15000^{1 /}$
DAC output low (VD-) - (VD+)			-2.12		V	Input data $=1500^{1)}$
DAC output high (VD-) - (VD+)			2.16		V	Input data $=15000^{1 /}$
Load capacitance	C_{L}			30	pF	
Output load		20			$k \Omega$	
Zero error		-1 \%		1 \%		(VD-) - (VD+) $=0 \mathrm{~V}^{2}$)
Gain error		-5 \%		5 \%		2)
INL		-0.5 \%		0.5 \%		2)
DNL		Monotonous				Guaranteed by design

[^3]3.2 Characteristics (Assuming Recommended Operating Conditions) (cont'd)

Parameter	Symbol	Limit Values			Unit	Remark
		min.	nom.	max.		

Reference Output $V_{\text {REFP }}$ (Adjustable by Reg 48 ${ }_{H}$, Bit D7 ... D3)
(Reg 48 ${ }_{H}$, Bit D2 = 0, Bit D1 = 0)

Output voltage min				4.0	V	Bit D7 \ldots D3 $=10000$
Output voltage max		4.0			V	Bit D7 \ldots D3 $=01111$
Output current	I_{Q}	-50		0	$\mu \mathrm{~A}$	

Reference Output $V_{\text {REFH }}\left(\operatorname{Reg}\right.$ 48 $_{\mathrm{H}}$, Bit D2 = 0)

Output voltage	V_{Q}	2.4	2.5	2.6	V	$V_{\text {REFP }}=4 \mathrm{~V}$

Reference Output $V_{\text {REFL }}\left(\operatorname{Reg}\right.$ 48 $_{\mathrm{H}}$, Bit D2 = 0)

Output voltage	V_{Q}	1.1	1.2	1.3	V	$V_{\text {REFP }}=4 \mathrm{~V}$

Output HD

Output low level	V_{OL}	0		1	V	$I_{\mathrm{O}}=8 \mathrm{~mA}$
Output high level	V_{OH}	V_{DD} -1 V		V_{DD}		$I_{\mathrm{O}}=-8 \mathrm{~mA}$

4 Application Information

Figure 7

5 Waveforms

5.1 VD- Output Voltage, 4/3-CRT and 16/9-Source

SRSE = $1 \quad$ Start Reduced Scan (SRS) selectable (line 0, 2...63)

Figure 8

5.2 Timing Diagram of SCAN

Figure 9
Timing Diagram of SCAN if STE $=0$

Figure 10
Timing Diagram of SCAN if STE $=1$

5.3 Power On/Off Diagram

Figure 11

5.4 Standby Mode, RESN Diagram

Figure 12

5.5 Function of H,V Protection

	HPROT	VPROT	Mode	SCP	HPON ${ }^{2)}$ $\mathrm{I}^{2} \mathrm{C}$ Bus	VPON ${ }^{2}$ $\mathrm{I}^{2} \mathrm{C}$ Bus
1			Start up	Continuous blanking	0	0
2		V1	H, V operation	1)	0	0
3			EHT overvoltage	Continuous blanking after t_{2}	$\begin{gathered} 1 \\ \text { after } t_{2} \end{gathered}$	0
4			H operation V short failure	Continuous blanking after t_{0} if SSC = 0	0	0
5			V longer failure H off after t_{1}	Continuous blanking after t_{0} if SSC = 0	0	$\begin{gathered} 1 \\ \text { after } t_{1} \end{gathered}$
6	$A \widehat{A}$		EHT short over- voltage	Continuous blanking after t_{2}	$\begin{gathered} 1 \\ \text { after } t_{2} \end{gathered}$	$\begin{gathered} 1 \\ \text { after } t_{1} \end{gathered}$

$t_{0}=2 / f_{v} \ldots 3 / f_{v} \quad t_{1}=64 / f_{v} \ldots 128 / f_{v} \quad t_{2}=1 / f_{v} \ldots 2 / f_{v}$

1) Depends on $\mathrm{I}^{2} \mathrm{C}$-control items
2) HPON or $\mathrm{VPON}=1: \mathrm{HD}=0$ (OFF)

6 Package Outlines

P-MQFP-44-2

(Plastic Metric Quad Flat Package)

${ }^{1)}$ Does not include plastic or metal protrusions of 0.25 max per side
GPM05622

Figure 13

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our
Data Book "Package Information".
SMD = Surface Mounted Device
Dimensions in mm

[^0]: 1) The external clock mode can not be used with 33.75 kHz and 35 kHz line frequency.
[^1]: 1) see 2.5.5: Explanation of some control items
[^2]: 1) $V_{\text {REFH }}=2.5 \mathrm{~V}, V_{\text {REFL }}=1.2 \mathrm{~V}$
 ${ }^{2)} V_{\text {REFH }}=2.5 \mathrm{~V}, V_{\text {REFL }}=1.2 \mathrm{~V}$, Input range $=100 \ldots 900$
[^3]: 1) $V_{\text {REFH }}=2.5 \mathrm{~V}, V_{\text {REFL }}=1.2 \mathrm{~V}$
 2) $V_{\text {REFH }}=2.5 \mathrm{~V}, V_{\text {REFL }}=1.2 \mathrm{~V}$, Input range $=1500$
